Chapter 10

Some Lessons from Capital Market History

Key Concepts and Skills

- Know how to calculate the return on an investment
- Understand the historical returns on various types of investments
- Understand the historical risks on various types of investments

Chapter Outline

- Returns
- The Historical Record
- Average Returns: The First Lesson
- The Variability of Returns: The Second Lesson
- More on Average Returns
- Capital Market Efficiency

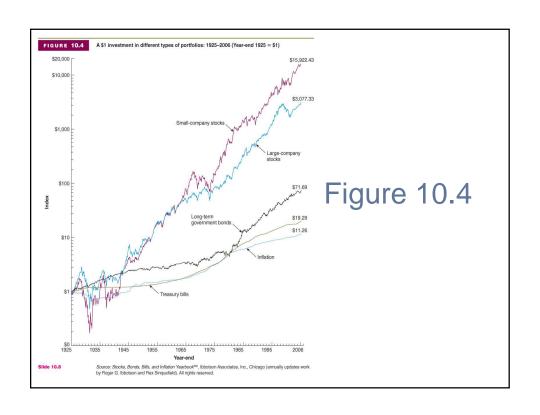
Risk, Return, and Financial Markets

- We can examine returns in the financial markets to help us determine the appropriate returns on non-financial assets
- Lessons from capital market history
 - There is a reward for bearing risk
 - The greater the risk, the greater the potential reward
 - This is called the risk-return trade-off

Dollar Returns

- Total dollar return = income from investment + capital gain (loss) due to change in price
- Example:
 - You bought a bond for \$950 one year ago. You have received two coupons of \$30 each. You can sell the bond for \$975 today. What is your total dollar return?
 - Income = \$30 + \$30 = \$60
 - Capital gain = \$975 \$950 = \$25
 - Total dollar return = \$60 + \$25 = \$85

Percentage Returns


- It is generally more intuitive to think in terms of percentages than dollar returns
- Dividend yield = income / beginning price
- Capital gains yield = (ending price beginning price) / beginning price
- Total percentage return = dividend yield + capital gains yield

Example: Calculating Returns

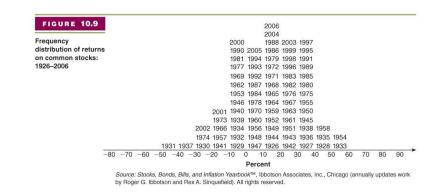
- You bought a stock for \$35 and you received dividends of \$1.25. The stock is now selling for \$40.
 - What is your dollar return?
 - Dollar return = 1.25 + (40 35) = \$6.25
 - What is your percentage return?
 - Dividend yield = 1.25 / 35 = 3.57%
 - Capital gains yield = (40 35) / 35 = 14.29%
 - Total percentage return = 3.57 + 14.29 = 17.86%

The Importance of Financial Markets

- Financial markets allow companies, governments, and individuals to increase their utility
 - Savers have the ability to invest in financial assets so they can defer consumption and earn a return to compensate them for doing so
 - Borrowers have better access to the capital that is available, allowing them to invest in productive assets
- Financial markets also provide us with information about the returns that are required for various levels of risk

Average Returns

Investment	Average Return	
Large Stocks	12.3%	
Small Stocks	17.4%	
Long-term Corporate Bonds	6.2%	
Long-term Government Bonds	5.8%	
U.S. Treasury Bills	3.8%	
Inflation	3.1%	


Risk Premiums

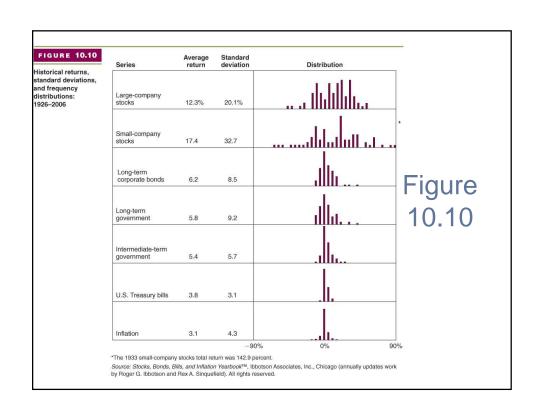
- The "extra" return earned for taking on risk
- Treasury bills are considered to be riskfree
- The risk premium is the return over and above the risk-free rate

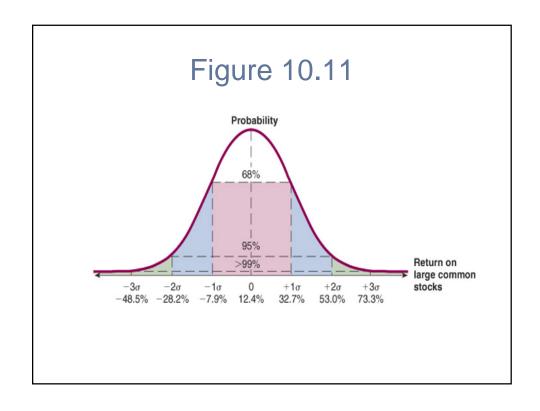
Historical Risk Premiums

- Large Stocks: 12.3 3.8 = 8.5%
- Small Stocks: 17.4 3.8 = 13.6%
- Long-term Corporate Bonds: 6.2 3.8 = 2.4%
- Long-term Government Bonds: 6.2 3.8 = 2.4%
- U.S. Treasury Bills: 3.8 3.8 = 0 (by definition!)

Figure 10.9

Variance and Standard Deviation


- We use variance and standard deviation to measure the volatility of asset returns
- The greater the volatility, the greater the uncertainty
- Historical variance = sum of squared deviations from the mean / (number of observations – 1)
- Standard deviation = square root of the variance

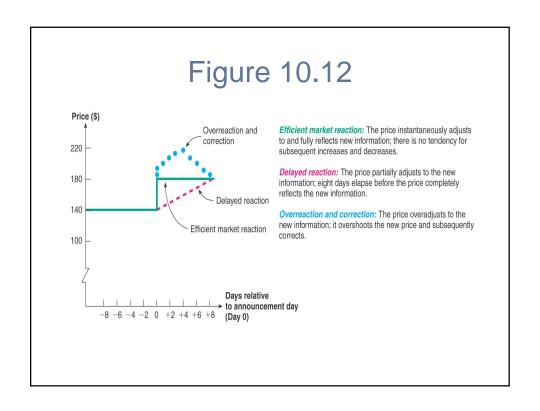

Example – Variance and Standard Deviation

Year	Actual Return	Average Return	Deviation from the Mean	Squared Deviation
1	.15	.105	.045	.002025
2	.09	.105	015	.000225
3	.06	.105	045	.002025
4	<u>.12</u>	.105	<u>.015</u>	.000225
Totals	.42		.00	.0045

Note: Average return = .42 / 4 = .105

Variance = .0045 / (4-1) = .0015 Standard Deviation = .03873

Arithmetic vs. Geometric Mean


- Arithmetic average return earned in an average period over multiple periods
- Geometric average average compound return per period over multiple periods
- The geometric average will be less than the arithmetic average unless all the returns are equal
- Which is better?
 - The arithmetic average is overly optimistic for long horizons
 - The geometric average is overly pessimistic for short horizons
 - So the answer depends on the planning period under consideration
 - 15 20 years or less: use arithmetic
 - 20 40 years or so: split the difference between them
 - 40 + years: use the geometric

Example: Computing Returns

- What are the arithmetic and geometric averages for the following returns?
 - Year 1 5%
 - Year 2 -3%
 - Year 3 12%
 - Arithmetic average = (5 + (-3) + 12)/3 = 4.67%
 - Geometric average = $[(1+.05)*(1-.03)*(1+.12)]^{1/3} 1 = .0449 = 4.49\%$

Efficient Capital Markets

- Stock prices are in equilibrium they are "fairly" priced
- If this is true, then you should not be able to earn "abnormal" or "excess" returns
- Efficient markets DO NOT imply that investors cannot earn a positive return in the stock market

What Makes Markets Efficient?

- There are many investors out there doing research
 - As new information comes to market, this information is analyzed and trades are made based on this information
 - Therefore, prices should reflect all available public information
- If investors stop researching stocks, then the market will not be efficient

Common Misconceptions about EMH

- Efficient markets do not mean that you can't make money
- They do mean that, on average, you will earn a return that is appropriate for the risk undertaken, and there is not a bias in prices that can be exploited to earn excess returns
- Market efficiency will not protect you from wrong choices if you do not diversify – you still don't want to put all your eggs in one basket

Strong Form Efficiency

- Prices reflect all information, including public and private
- If the market is strong form efficient, then investors could not earn abnormal returns regardless of the information they possessed
- Empirical evidence indicates that markets are NOT strong form efficient, and that insiders can earn abnormal returns (may be illegal)

Semistrong Form Efficiency

- Prices reflect all publicly available information including trading information, annual reports, press releases, etc.
- If the market is semistrong form efficient, then investors cannot earn abnormal returns by trading on public information
- Implies that fundamental analysis will not lead to abnormal returns

Weak Form Efficiency

- Prices reflect all past market information such as price and volume
- If the market is weak form efficient, then investors cannot earn abnormal returns by trading on market information
- Implies that technical analysis will not lead to abnormal returns
- Empirical evidence indicates that markets are generally weak form efficient

Quick Quiz

- Which of the investments discussed have had the highest average return and risk premium?
- Which of the investments discussed have had the highest standard deviation?
- What is capital market efficiency?
- What are the three forms of market efficiency?